Sensitivity of Distributed Hydrologic Simulations to Ground and Satellite Based Rainfall Products
نویسندگان
چکیده
In this study, seven precipitation products (rain gauges, NEXRAD MPE, PERSIANN 0.25 degree, PERSIANN CCS-3hr, PERSIANN CCS-1hr, TRMM 3B42V7, and CMORPH) were used to force a physically-based distributed hydrologic model. The model was driven by these products to simulate the hydrologic response of a 1232 km watershed in the Guadalupe River basin, Texas. Storm events in 2007 were used to analyze the precipitation products. Comparison with rain gauge observations reveals that there were significant biases in the satellite rainfall products and large variations in the estimated amounts. The radar basin average precipitation compared very well with the rain gauge product while the gauge-adjusted TRMM 3B42V7 precipitation compared best with observed rainfall among all satellite precipitation products. The NEXRAD MPE simulated streamflows matched the observed ones the best yielding the highest Nash-Sutcliffe Efficiency correlation coefficient values for both the July and August 2007 events. Simulations driven by TRMM 3B42V7 matched the observed streamflow better than other satellite products for both events. The PERSIANN coarse resolution product yielded better runoff results than the higher resolution product. The study reveals that satellite rainfall products are viable alternatives when rain gauge or ground radar observations are sparse or non-existent.
منابع مشابه
Effects of Resolution of Satellite-Based Rainfall Estimates on Hydrologic Modeling Skill at Different Scales
Uncertainty due to resolution of current satellite-based rainfall products is believed to be an important source of error in applications of hydrologic modeling and forecasting systems. A method to account for the input’s resolution and to accurately evaluate the hydrologic utility of satellite rainfall estimates is devised and analyzed herein. A radar-based Multisensor Precipitation Estimator ...
متن کاملPhysically, Fully-Distributed Hydrologic Simulations Driven by GPM Satellite Rainfall over an Urbanizing Arid Catchment in Saudi Arabia
A physically-based, distributed-parameter hydrologic model was used to simulate a recent flood event in the city of Hafr Al Batin, Saudi Arabia to gain a better understanding of the runoff generation and spatial distribution of flooding. The city is located in a very arid catchment. Flooding of the city is influenced by the presence of three major tributaries that join the main channel in and a...
متن کاملInvestigating the Applicability of Error Correction Ensembles of Satellite Rainfall Products in River Flow Simulations
This study uses a stochastic ensemble-based representation of satellite rainfall error to predict the propagation in flood simulation of three quasi-global-scale satellite rainfall products across a range of basin scales. The study is conducted on the Tar-Pamlico River basin in the southeastern United States based on 2 years of data (2004 and 2006). The NWSMultisensor Precipitation Estimator (M...
متن کاملValidation of Satellite Rainfall Products over a Mountainous Watershed in a Humid Subtropical Climate Region of Brazil
Remote sensing allows for the continuous and repetitive measurement of rainfall values. Satellite rainfall products such as Tropical Rainfall Measurement Mission (TRMM) 3B42 and the Hydroestimator (Hydroe) can be potential sources of data for hydrologic applications, mainly in areas with irregular and sparse spatial distributions of traditional rain gauge stations. However, the accuracy of thes...
متن کاملTracing hydrologic model simulation error as a function of satellite rainfall estimation bias components and land use and land cover conditions
[1] The key question that is asked in this study is ‘‘how are the three independent bias components of satellite rainfall estimation, comprising hit bias, missed, and false precipitation, physically related to the estimation uncertainty of soil moisture and runoff for a physically based hydrologic model?’’ The study also investigated the performance of different satellite rainfall products as a...
متن کامل